TRA CỨU
Thư mục - Vốn tư liệu
MARC
Hiển thị đầy đủ trường & trường con
TagGiá trị
00000000nab#a2200000ui#4500
00157084
0022
004068FAB9C-4BBB-4046-BAB1-7374634A689D
005202007010828
008081223s2018 vm| vie
0091 0
035[ ] |a 1456417238
039[ ] |a 20241202144550 |b idtocn |c 20200701082809 |d thuvt |y 20191127150010 |z thuvt
041[0 ] |a vie
044[ ] |a vm
100[0 ] |a Phạm, Quang Nhật Minh
245[1 0] |a A Feature-Based Model for Nested Named-Entity Recognition at VLSP-2018 NER Evaluation Campaign / |c Phạm Quang Nhật Minh
260[ ] |c 2018.
300[1 0] |a tr.311-321
650[1 0] |a In this report, we describe our participant named-entity recognition system at VLSP 2018 evaluation campaign. We formalized the task as a sequence labeling problem using BIO encoding scheme. We applied a feature-based model which combines word, word-shape features, Brown-cluster-based features, and word-embedding-based features. We compare several methods to deal with nested entities in the dataset. We showed that combining tags of entities at all levels for training a sequence labeling model (joint-tag model) improved the accuracy of nested named-entity recognition.
653[0 ] |a Đánh giá
653[0 ] |a Nested named-entity recognition
653[0 ] |a CRF
653[0 ] |a VLSP
653[0 ] |a Nhận dạng thực thể
773[0 ] |t Tạp chí Tin học và Điều khiển học |g Vol.34, No 4
890[ ] |a 0 |b 0 |c 0 |d 0